cv.sparse.mediation.Rd
Conduct K-fold cross validation for sparse mediation with elastic net with multiple tuning parameters
cv.sparse.mediation(X, M, Y, tol = 10^(-10), K = 5, max.iter = 100, lambda = log(1 + (1:15)/50), lambda2 = c(0.2, 0.5), alpha = 1, tau = c(1), multicore = 1, seednum = 1e+06, verbose = FALSE)
X | One-dimensional predictor |
---|---|
M | Multivariate mediator |
Y | Outcome |
tol | (default -10^(-10)) convergence criterion |
K | (default=5) number of cross-validation folds |
max.iter | (default=100) maximum iteration |
lambda | (default=log(1+(1:30)/100)) tuning parameter for L1 penalization |
lambda2 | (default=c(0.2,0.5)) tuning parameter for inverse covariance matrix sparsity. Only used if n>(2*V). |
alpha | (defult=1) tuning parameter for L2 penalization |
tau | (default=1) tuning parameter for differential weight for L1 penalty. |
multicore | (default=1) number of multicore |
seednum | (default=10000) seed number for cross validation |
verbose | (default=FALSE) |
cv.lambda: optimal lambda
cv.tau: optimal tau
cv.alpha: optimal tau
cv.mse: minimum MSE value
mse: Array of MSE, length(alpha) x length(lambda) x length (tau)
lambda: vector of lambda
tau: vector of tau used
alpha: vector of alpha used
z: cross-valication results
TBA